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Two-dimensional nonlocal heating theory of planar-type inductively coupled plasma discharge

N. S. Yoon, S. M. Hwang, and Duk-In Choi*
Korea Basic Science Institute, Taejeon 305-333, Korea

~Received 9 December 1996!

A two-dimensional heating theory of planar-type inductively coupled plasma~ICP! discharge is developed.
The theory includes the anomalous skin effect with an arbitrary value of electron collision frequency and
source current. Based on the uniqueness theorem of wave equation, wave excitation by the source current is
determined. With the calculated electromagnetic fields, plasma resistance is expressed as a function of various
parameters such as plasma densitynp , electron temperatureTe , radius of chamberR, length of plasmaLp ,
shielding cap lengthLs , electron collision frequencyn, excitation frequencyv, and the position and size of the
antenna coil.@S1063-651X~97!14606-2#

PACS number~s!: 52.80.Pi, 52.50.2b, 52.75.2d
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I. INTRODUCTION

Inductively coupled plasma~ICP! sources have been th
subject of many experimental and theoretical investigati
@1–10#, owing to the fact that a high-density plasma wi
good uniformity is easily obtained under low pressure wi
out an external magnetic field. Two types of ICP reactors
available@11#, classified according to shape and the posit
of the coil. One type of reactor has a planar coil at the top
the cylindrical chamber~planar type, also called TCP! @1–9#,
and the other one has a solenoidal coil wound at the sid
the chamber~solenoidal type! @10#. The ICP reactor can be
easily scaled up to accommodate a larger wafer size com
ing to the other reactors~Helicon, electron cyclotron reso
nance, etc.! because the system is substantially simpler.

For the electron heating mechanism of ICP discharge,
lisionless heating is widely accepted as the primary mec
nism on sustaining low-pressure inductive radio-freque
discharges. It has also been suggested, in both planar
@12# and solenoidal-type@10# reactors, that the collisionles
electron heating mechanism is a warm plasma effect an
gous to the anomalous skin effect in metals. The anoma
skin effect is a transverse analog of the Landau damp
from the standpoint of wave-particle interaction in plasm
@13#. The electrons gain energy through the resonant c
pling with the transverse electromagnetic waves.

Although theories of collisionless heating of inductiv
discharges have not been well established@14–18# until now,
there is some progress in understanding of the anoma
skin effect on plasma: The anomalous skin effect on the
infinite plasma was studied by Weibel@15#. In addition, the
bounded plasma with a symmetric wave and, thus, cur
source, has been investigated by Reynolds, Blevin, and T
nemann@16# and Sayasov@19#. However their results are no
directly applicable to a planar-type ICP discharge reac
because it has current source only at one side of the pla
boundary. The modulation effect of the wave electric field
the conducting boundary at the other side of the plasma
been investigated by Yoonet al. @20#.

*Also at Department of Physics, Korea Advanced Institute of S
ence and Technology, Taejeon 305-701, Korea.
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However, all the above studies are only for the on
dimensional case, and a realistic current source is not
cluded. The lack of a general heating formula, which is va
for an arbitrary chamber size, electron collisions, and
position and size of antenna coil, has hindered an accu
modeling of the plasma discharge phenomena. The first
ficulty in two-dimensional modeling is that the radial norm
mode of an electron kinetic equation is not amenable to
operation with the eigenmode of the wave equation. This
been overcome in this work by assuming that the radius
the reactor chamber is sufficiently larger than the skin dep
as is the case with the usual TCP discharges. The next p
lem is the determination of excitation coefficients of t
wave normal mode by the external coil current. The us
treatment of the wave excitation problem is based on
induction theorem@21# and the effective current sheet mod
@22#. However, the induction theorem originates in t
uniqueness theorem of the Maxwell equations, and thus
uniqueness theorem should be assured in this case. We
that the uniqueness theorem can be proved in this prob
and that the effect of the antenna current on the plasma
be described by an effective surface current. Utilizing t
Maxwell equations, the effective surface current is se
consistently determined from the real antenna current sou
We present an analytic and two-dimensional solution of
anomalous skin effect in terms of the well-known conduct
ity of the homogeneous hot plasma and external coil curr
The perfect electron reflecting boundary condition at walls
utilized to convert the finite-sized nonlocal heating proble
into a periodic system with an infinite range. This equivale
infinite periodic system problem is then described by
conductivity of a homogeneous plasma and an effective c
rent sheet. The effective current sheet is self-consistently
termined from the real antenna current by manipulating
Maxwell equations. Once the electromagnetic fields are
termined, then the plasma impedance can be calculated
the field quantities@23#. The resulting plasma impedance b
comes a function of various parameters such as plasma
sity np , electron temperatureTe , radius of chamberR,
length of plasmaLp , shielding cap lengthLs , electron col-
lision frequencyn, excitation frequencyv, and the position
and size of the antenna coil. On the other hand, it w
pointed out that the electron ponderomotive force can af
i-
7536 © 1997 The American Physical Society
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55 7537TWO-DIMENSIONAL NONLOCAL HEATING THEORY OF . . .
the ambipolar diffusion in Refs.@24,25#. However the lack of
an accurate calculation of the ponderomotive force has
dered an understanding of the effect of the ponderomo
force on the plasma transport. The exact calculation of
electric field in this work make possible more detailed u
derstanding of the role of the ponderomotive force in
plasma discharge.

This paper is organized as follows. In Sec. II, the wa
equation and boundary conditions are described, and the
lution is presented. The numerical results for a simple
tenna coil structure and discussions are presented in Sec
The summary of this work is given in Sec. IV. Finally, w
present a mathematical verification related to the charac
istic scale length of perturbed distribution, and a proof of
uniqueness theorem of the Maxwell equations in the pre
problem in the Appendixes.

II. THEORY

A. Maxwell-Bolzmann equations and boundary conditions

A schematic diagram of the TCP system and the coo
nate system adopted in this work is presented in Fig. 1.
radio-frequency~rf! power generator is connected via
matching box to an antenna which is placed just abov
dielectric plate. The time-varying magnetic-field flux induc
an electric field~or equivalently, an electromotive force!, and
the electrons, which gain energy from the induced elec
field, ionize the neutral atoms. For convenience, the wh
chamber space is divided into two parts: the antenna reg
which is surrounded by the shielding cap, and the plas
region.

By using Helmholz’s theorem for a vector, the elect
and magnetic fields can be resolved into irrotational~longi-
tudinal or capacitive! and solenoidal~transverse or inductive!
parts. Since¹•B50, the magnetic fieldB is always induc-
tive, while electric field has the inductive (Ein) and capaci-
tive (Ecp) components. The important roles of the capacit
field are of two kinds: The first one is an active participati
in the electron heating mechanism of plasma at low pow
The next one is the difference between the conduction
rent flowing on the antenna and the input current building

FIG. 1. Schematic diagram of the TCP reactor and the coo
nate system adopted in this work.
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the displacement current in the direction perpendicular to
antenna surface. Therefore, a self-consistent treatment o
iteration scheme, such as performed in Ref.@26#, is needed to
include the capacitive field effect. However, under the pr
tical TCP discharge condition, the dominant electron heat
source is still the inductive part of the electric field rath
than the capacitive part, and the capacitive field is usu
Faraday shielded. Therefore, only the inductive field is c
sidered in this work.

Assuming that all physical quantities haveu symmetry,
thusEin , the two-dimensional wave equation describing t
inductive electric field component having only
u-component becomes

¹2~Euu!1k2Euu5¹2~Eu!u2
1

r
Euu1k2Euu

52
4pv

c2
iJu, ~1!

wherev is the excitation frequency,k5v/c, and J is the
sum of all current densities available in the reactor.

If a solution of Eq.~1! is obtained with given boundary
conditions, then the magnetic field components can be e
mated from

Br~r ,z!5
i

k

]Eu~r ,z!

]z
, ~2!

Bz~r ,z!52
i

k

1

r

]

]r
@rEu~r ,z!#, ~3!

and the power absorbed by electrons is

Pabs5 ReF12EVJp* •E dr G , ~4!

whereJp is the plasma current density andV is the plasma
volume.

All chamber wall materials are assumed to be perfect c
ductors, and thusEu50 at all chamber surfaces. There is n
direct method to obtain the solution of Eq.~1! that is appli-
cable both in antenna and plasma regions. Therefore, at
the wave equation is solved in each region separately,
then the solutions for two regions are matched without a l
of self-consistency. An additional boundary condition
needed at the surface between the two regions. As the
poral boundary condition, let us take aBr(r ,0) @or equiva-
lently, a surface current densityK5c/4pBr(r ,0)# at z50.
Then the solutions in each region are obtained w
Br(r ,0). At this time, the question of the uniqueness of t
solution with this boundary condition arises. In the anten
region, it is obvious that the solution is uniquely determin
with the tangential component of magnetic field@21#. How-
ever, in the plasma region, the uniqueness should
checked. We give the proof of the uniqueness of the solu
in the plasma region in Appendix B. The boundary conditi
set is a mixed one which is generally much more difficult
handle than the normal-type problem@23#. After solving the
wave equation~1! in each region, the value ofBr(r ,0) is

i-
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determined as a function of coil current by the condition
electric field continuity atz50.

B. Normal mode in the plasma region

The wave equation describing the inductive electric fi
in the plasma region becomes

]2Eu

]r 2
1
1

r

]Eu

]r
2
Eu

r 2
1

]2Eu

]z2
1k2Eu52

4pk

c
iJp , ~5!

whereJp is the plasma current density. As previously stat
the boundary conditions are

Eu~R,z!50,Eu~r ,Lp!50 and

Br~r ,0!5B05
i

k

]Eu~r ,z!

]z U
z50

. ~6!

To obtain a self-consistent solution of Eq.~5!, Jp should be
expressed in terms ofEu via a conductivity of plasma. With
the time-varying factor exp(2ivt), the plasma current den
sity can be expressed through a nonlocal conductivity
plasmaS in general as

Jp~r ,z!5E
Vp

S~r ,z,r 8,z8!Eu~r 8,z8!dr8dz8. ~7!

The conductivity of plasma is to be calculated from the l
earized Boltzmann equation as

2 iv f 11v r
] f 1
]r

1vz
] f 1
]z

1
eEu

Te
vu f 052n f 1 , ~8!

where the distribution functionf5 f 01 f 1, f 0 is the Maxwell-
ian velocity distribution function,f 1 is its perturbed part,
Te is the electron temperature,n is the collision frequency of
electron with neutral atoms, andv r , vz , andvu are ther ,
z, andu components of the electron velocity, respective
Sincev is much larger than the ion plasma frequency,
ion motion is neglected.

In the typical ICP discharge condition, the term
v r] f 1 /]r is much smaller thanvz] f 1 /]z term because

v r] f 1 /]r
vz] f 1 /]z

;
v th] f 1 /]r
v th] f 1 /]z

;
d

R
!1, ~9!

wherev th5A2Te /me, d is a skin depth, andme is the elec-
tron mass. A proof of] f 1 /]z; f 1 /d is given in Appendix A.
If the term ofv r] f 1 /]r is neglected in Eq.~8!, the conduc-
tivity obtained from this equation is a function of onlyz, and
the term vz] f 1 /]z requires a boundary condition for th
electron reflection at the wallsz50 and z5Lp . Then the
current density becomes

Jp~r ,z!5E
0

Lp
S~z,z8!Eu~r ,z8!dz8. ~10!

As shown in the one-dimensional theory, if the perfectly
flecting boundary condition is adopted, the finite-sized pr
lem can be converted to a periodic system problem with
infinite range alongz, and the current density can be e
f

,

f

-

.
e

-
-
n

pressed with the conductivity of an infinitely homogeneo
plasma. Therefore, if we neglect the termv r] f 1 /]r in the
linearized Bolzmann equation, and the definitions ofEu and
Jp are extended into the domainsz,0 andz.Lp in a similar
manner to the one-dimensional case, the current density
be expressed with the conductivity of an infinitely homog
neous plasma as

Jp~r ,z!5E
2`

`

s~z2z8!Eu~r ,z8!dz8, ~11!

wheres(z) is the one-dimensional conductivity of the ho
mogeneous plasma, which has translational invariance a
z, and its Fourier component is

sq[
1

A2p
E

2`

`

s~z!e2 iqzdz52
i

Ap

vp

8p

qD
q
ZpS v1 in

uquv th
D ,
~12!

wherevp is the plasma frequency,qD is the Debye wave
number defined byqD5A4pne

2/Te, and Zp is the plasma
dispersion function@27# with electron densityne . In this
infinitely periodic system, the electric field is not differen
tiable atz5zn[nLp , wheren is an arbitrary integer, and
thus the second derivative ofEu do not have a finite value a
these points. As in the one-dimensional case, the wave e
tion, which properly describes all points including the d
continuities of the derivative ofEu , can be obtained by add
ing d-function terms on the right-hand side of Eq.~5! as

]2Eu

]r 2
1
1

r

]Eu

]r
2
Eu

r 2
1

]2Eu

]z2
1k2Eu

52
4pk

c
iJp22ik (

n52`

`

Br~r ,zn10!d~z2zn! ~13!

whered(z) is the Dirac delta function, and

Br~r ,zn10![ lim
«→0

Br~r ,zn1«!,

Br~r ,zn20![ lim
«→0

Br~r ,zn2«!52Br~r ,zn10! for «>0.

~14!

Eu and Jp can be expanded by the Fourier-Bessel se
without loss of generality as

Eu~r ,z!5 (
m51

`

J1~pmr !Fem0~p!

2
1 (

n51

`

emn
~p!cos~qnz!G ,

Jp~r ,z!5 (
m51

`

J1~pmr !F j m0~p!

2
1 (

n51

`

j mn
~p!cos~qnz!G , ~15!

whereJ1 is the first-order Bessel function,pm[a1,m /R, and
qn[np/Lp , and wherea1,m is themth zero ofJ1. The Neu-
mann functionNn(pmr ) disappears in Eq.~15! in order to
maintain finite values ofEu andJp at r50. The components
of the Fourier-Bessel seriesemn

(p) and j mn
(p) are defined by
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emn
~p!5

4

LpR
2J2

2~a1,m!
E
0

LpE
0

R

EuJ1~pmr !cos~qnz!r dr dz,

j mn
~p!5

4

LpR
2J2

2~a1,m!
E
0

LpE
0

R

JpJ1~pmr !cos~qnz!r dr dz,

~16!

whereJ2 is the second-order Bessel function. The relat
betweenemn

(p) and j mn
(p) is obtained from the convolution of Eq

~10! as

j mn
~p!5A2psnemn

~p! , ~17!

wheresn[sqn
. If Eqs. ~15! and~17! are substituted into Eq

~13!, we have

2~qn
22k2!Eu2(

m,n
pm
2 emn

~p!J1~pmr !cos~qnz!

52
4pk

c
iJp22ik (

n52`

`

Br~r ,zn10!d~z2zn!.

~18!

And, if Eq. ~18! is multiplied by cos(qnz) and integrated from
2Lp to Lp after being substituted into Eq.~15!, we have

2 (
m51

`

~qn
21pm

2 !emn
~p!J1~pmr !

52A2p
4pk

c
isn (

m51

`

emn
~p!J1~pmr !

2
2ik

Lp
@B0~r !2~21!nBw~r !#, ~19!

with definitions of

Bw[Br~r ,Lp20!52Br~r ,Lp10!. ~20!

emn
(p) is obtained by multiplingrJ1(pmr ) by Eq. ~19! and by
integrating from 0 toR as

emn
~p!5

2ik

Lp

b0,m2~21!nbw,m
Dmn

, ~21!

where b0,m and bw,m are the components of the Fourie
Bessel series ofB0(r ) andBw(r ) defined by

b0,m5
4

R2J2
2~am!

E
0

LpE
0

R

B0~r !J1~pmr !r dr ,

bw,m5
4

R2J2
2~am!

E
0

LpE
0

R

Bw~r !J1~pmr !r dr , ~22!

and where

Dmn5pm
2 1qn

22k22
4pk

c
iA2psn . ~23!
n

To complete the calculation,Bw(r ) should be evaluated in
terms ofB0(r ). Bw(r ) is determined from the boundary con
dition Eu(r ,Lp)50 as

Eu~r ,Lp!505 (
m51

`

J1~pmr !Fem0~p!

2
1 (

n51

`

emn
~p!G

52
2ik

Lp
(
m51

`

J1~pmr ! (
n50

`
~21!nb0,m2bw,m

Dmn
.

~24!

If Eq. ~24! is multiplied by rJ1(pmr ) and integrated from
0 to R, we have

bw,m5b0,m
Sm

~2!

Sm
~1! , ~25!

where

Sm
~1!5 (

n50

`
1

Dmn
, Sm

~2!5 (
n50

`
~21!n

Dmn
. ~26!

Substituting Eq.~26! into Eq. ~21!, we can obtain the fina
form of the solution as

emn
~p!5

2ik

Lp

b0,m
Dmn

F12~21!n
Sm

~2!

Sm
~1!G . ~27!

Hereb0,m ~or surface current density! reflects the source cur
rent.

C. Excitation of the anomalous skin effect mode
by source current

To complete the calculation,b0,m has to be expressed as
function of the coil current densityJc(r ,z). If we solve the
wave equation or Maxwell equations in antenna region w
givenB0 as the boundary condition atz50, then the value of
Eu(r ,0) may be obtained as a function ofJc andB0. Then
B0 can be determined by the condition of continuity of t
electric field atz50.

However, in the present work, we use a simple dir
method of calculatingEu(r ,0) as a function ofJc with the
boundary condition of

Eu~R,z!50, Eu~r ,2Ls!50 and

Br~r ,0!5B05
i

k

]Eu~r ,z!

]z U
z50

. ~28!

A similar method is used to obtain the fields by a localiz
source in the wave guide@23#. First, we consider eigenmode
of the sourceless wave equation for inductive fields wh
obey the boundary conditions except atz50:

Em5J1~pmr !sinh@bm~z1Ls!#u, ~29!

Bm5Br ,mr1Bz,mz, ~30!

where
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Br ,m52
i

kF2
]Em

]z
1
1

r

]

]r
~rEm!G

5
i

k
bmJ1~pmr !cosh@bm~z1Ls!#, ~31!

Bz,m52
i

k

1

r

]

]r
~rEm!. ~32!

Here bm5Apm2 2k2, andbm is a real number because th
chamber radius is less than the vacuum wavelength. AllEm
andBm obviously satisfy the source-free Maxwell equatio
and the boundary conditions of Eq.~30!, except atz50. The
arbitrary vacuum fieldsEu5Euu and B5Brr1Bzz, which
satisfy the boundary conditions of Eq.~28!, can be expanded
by Em andBm without loss of generality. Next we use th
identity of

¹•@Eu3Bm2Em3B#5
4p

c
Jc•Em , ~33!

which follows from the source-free Maxwell equations f
Em andBm , and the Maxwell equations with the source
Jc satisfied withEu andB. Integration of Eq.~33! over the
volume Vs bounded by a closed surfaceS leads, via the
divergence theorem, to the result

E
S
@Eu3Bm2Em3B#•n da5

4p

c E
Vs

Jc•Emdr , ~34!

wheren is an outwardly normal direction. With the assum
tion of perfect conductor walls atz52Ls andr5R, the part
of the surface integral over the shielding cap vanishes. O
the integrals over the surface atz50 contribute. Hence Eq
~34! can be transformed to

E
0

R

@Eu~r ,0!Br ,m~r ,0!2Em~r ,0!Br~0!#r dr

52
4p

c E
2Ls

0 E
0

R

Jc~r ,z!Em~r ,z!r dr dz. ~35!

SinceEu(r ,0) can be expanded by the Fourier-Bessel se
without loss of generality as

Eu~r ,0!5 (
m51

`

amJ1~pmr !, ~36!

and by substituting expression Eq.~36! into Eq. ~35! and
integrating it forr from 0 toR, we have

am5 i
k

bm
F4p

c
j c,m
~sh,Ls! sech~bLs!2tanh~bmLs!b0,mG ,

~37!

where

j c,m
~sh,Ls![

2

LsR
2J2

2~a1,m!
E

2Ls

0 E
0

R

Jc~r ,z!J1~pmr !

3sinh@bm~z1Ls!#r dr dz. ~38!
ly

s

Notice that the above scheme yields electric fields only at
surface atz50, but this solution includes the effects of th
surface current over the shielding cap and the plasma cur
through the boundary condition of Eq.~30!. Matching the
above expression for the electric field atz50 with the solu-
tion of the wave equation with the source of the plas
current density, we obtainb0,m as

b0,m5
2pLs
c

j c,m
~sh,Ls!Fsinh~bmLs!12

bm

Lp
cosh~bmLs!Sm G21

,

~39!

where

Sm5
~Sm

~1!!22~Sm
~1!!2

Sm
~1! . ~40!

Combining Eqs.~27! and ~39!, we have

emn
~p!5

4ipk

Lpc
2

j c,m
~sh,Ls!

Dmn
F12~21!n

Sm
~2!

Sm
~1!GF sinh~bmLs!

12
bm

Lp
cosh~bmLs!SmG21

. ~41!

From these obtained electromagnetic fields, the imp
ance of plasma can be determined:

Z~p!52
2

uI u2S 2E
Sp

S•n daD
52 i

vR2

4Lp
(
m51

`

J2
2~am!Ub0mI U2Sm , ~42!

whereSp denotes the interface between the plasma and
tenna region, andI is the input current. If we assume that th
antenna size is negligible, then we can wr
Jc(r ,z)5( j I c, jd(r2r c, j )d(z2zc, j ), and, since

j c,m
~sh,Ls!5(

j

4r c, j
LsR

2J2
2~am!

I c, j J1~pmr c, j !sinh@bm~Ls1zc, j !#,

~43!

the plasma impedance becomes

Z~p!52 i
16p2

c2
v

LpR
2 (
m51

`

Sm

3
( j r c, j

2 J1
2~pmr c, j !sinh

2@bm~Ls1zc!#

usinh~bmLs!1~2bm /Lp!cosh~bmLs!Smu2

5Z~p!~np ,Te ,v,n,R,Lp ,Ls ,r c ,zc!. ~44!

The d function assumptionJc(r ,z)5( j I c, jd(r2r c, j )d(z
2zc, j ) yields an infinite value of electric field at poin
(r c ,zc), and thus the self inductance of the antenna beco
infinite. Hence if we want to calculate the total impedance
the reactor, the antenna-size should be considered. Howe
since the main objective of this work is to investigate t
functional dependence of plasma power absorption on
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FIG. 2. Spatial variation of the electric field
E at four different times of the rf period for a
single-turn antenna.
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keep our assumption of infinitely thin antenna.

We note that the plasma impedance is a function of n
variables such as the plasma parametersnp , Te , andn, the
geometric parametersR, Lp , and Ls , and the antenna re
lated parametersv, r c , andzc . Although the summation on
m in Eq. ~44! is rapidly converging, the convergence of th
sums onn in Sm

(1) andSm
(2) for largem is not so good becaus

Dmn;pm
2 1qn

2 for largen, and thusDmn is not significantly
increased untilqn.pm . Instead of direct summations, w
rearrange the summations and sum the differences betw
the rearranged series and their asymptotic series: If we de

Sm
e[

1

2Dm0
1 (

n51

`
1

Dm2n
, Sm

o[ (
n51

`
1

Dm2n21
, ~45!

then

Sm
~1!5Sm

e 1Sm
o , Sm

~2!5Sm
e 2Sm

o ~46!

and asymptotic series ofSm
e andSm

o are

Sm
e,asp5

1

2bm
2 1 (

n51

`
1

bm
2 1q2n

2 5
Lp
4bm

@11exp~2bmLp!#
2

12exp~22bmLp!
,

Sm
o,asp5 (

n51

`
1

bm
2 1q2n21

2 5
Lp
4bm

@12exp~2bmLp!#
2

12exp~22bmLp!
.

~47!

We find that the series of the difference betweenSm
e and

Sm
e,asp (Sm

e andSm
e,asp) is rapidly converging.

It is interesting to compare the presentZ(p) with its colli-
sional case. For the limited case ofn@v, it is easily shown
that the collisional formula of the plasma impedance
comes
we

e

en
ne

-

Z~p,col!52 i
8p2

c2
v

R2 (
m51

`
tanh~gmLp!

gm

3
( j r c, j

2 J1
2~pmr c, j !sinh

2@bm~Ls1zc!#

usinh~bmLs!1~bm /gm!cosh~bmLs!tanh~gLp!u2
,

~48!

wheregm
2 5pm

2 2k21(vp
2/c2)@11 i (n/v)#21.

The ponderomotive force potential can be calculated a

Vpmf5
1

4

e2

mv2 uEu2. ~49!

We notice that the ponderomotive force study in the pres
model is not self-consistently treated, because the resp
of the electrons for the ponderomotive force is not includ
We retain a more complete derivation of the ponderomot
force potential as a future work.

III. NUMERICAL RESULTS AND DISCUSSION

Figures 2–6 show the spatial variations of the elec
field E, the magnetic-field componentsBr and Bz , the
plasma current densityJp , and the power density absorbe
by electrons at four different times of the rf period for th
case of the single-turn antenna. The default parameter
these calculations arenp51012 cm23, Te55 eV,
v/2p513.56 MHz,n50,R510 cm,Lp55 cm,Ls510 cm,
r c57 cm,zc521 cm, andI c550 A. We can see that ther
are minimum amplitude points for the electric and magne
fields, and large phase changes occur at these points~Figs. 2,
3 and 4!. This phenomenon is also observed in the on
dimensional theory@20#, and never occurs for collisiona
heating with so small a chamber length relative to t
vacuum wavelength of the rf wave. As expected from Ma
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FIG. 3. Spatial variation of the magnetic-fiel
componentBr at four different times of the rf
period for a single-turn antenna.
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well equations, the magnetic field is out of phase with
electric field andBz has a node point near the antenna po
tion ~Fig. 4!. Although the real part of the plasma conducti
ity is not zero while collision frequency is zero, the phase
the Jp is nearly out of phase with theE ~Fig. 5!. This is
because the imaginary part of the conductivity is still grea
than the real part. With this infinitely thin antenna, the d
posited power density is localized near the antenna pos
~Fig. 6!.

Figures 7–11 represent the spatial variations of the e
tric field E, the magnetic field componentsBr andBz , the
plasma current densityJp , and the power density absorbe
e
i-

f

r
-
n

c-

by electrons at four different times of the rf period for th
double-turn antenna case. The default parameters are
same as in the case of a single-turn antenna, exceptr c54
and 7 cm. The phase difference between the two coils of
antenna is assumed to be zero. The main features are se
be similar to the single-turn case. Actually the conducti
currents flowing on the antenna surface can be varied
cause there are capacitive electric field and the displacem
current due to this capacitive field@26#. The investigations
including the effect of the capacitive field will be the subje
for our future work.

Figures 12–14 show the dependence of the plasma re
d
FIG. 4. Spatial variation of the magnetic-fiel
componentBz at four different times of the rf
period for a single-turn antenna.
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FIG. 5. Spatial variation of the plasma curre
densityJp at four different times of the rf period
for a single-turn antenna.
na

.
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t

,
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th

t
r

-

cha-
s a
e the
tanceRp on various parameters for the single-turn anten
The default parameters arenp51012 cm23, Te55 eV,
v/2p513.56 MHz, n50, R510 cm, Lp520 cm, Ls510
cm, r c57 cm, andzc521 cm without any specification
We notice that, in Figs. 12–14, there are some cases w
the values of the parameters do not satisfy the condi
d<L. In that case, the radial electron motion can change
results.

Figure 12 shows the dependence of the plasma resist
Rp on the collision frequency for different plasma densitie
The dotted line is the collisional form of the real part of E
~48!. We observe that there is a great disparity between
collisional and collisionless formulas whenn/v is small,
while the collisionless form goes over to the collisional for
as n/v becomes large. We can also see that the larger
plasma density, the greater the disparity.

The dependence ofRp on np , Te , v/2p, andR is repre-
sented in Fig. 13.Rp increases for the low-density region
and after meeting a maximum value it decreases as the
sity increases. The reason for this is similar to the case of
solenoidal-type discharge in Ref.@14#, and it is as follows: In
the low-density region, since the wave deeply penetrates
plasma, the skin depthds is nearly equal to the chambe
length, so that
.

re
n
e

ce
.
.
e

he

n-
e

he

Rp}E
0

RE
0

LpuJpu2

Seff
dz r dr, ~50!

whereSeff is the effective conductivity of plasma, andds is
defined by

ds[2
c

4pk

uZsu2

Im@Zs#
, ~51!

whereZs is the surface impedance of plasma@20#. Since the
plasma current densityuJpu2 is the more rapidly increasing
function ofnp thanSeff , Rp is an increasing function ofnp
in the low-density region. At high plasma density, since

Rp}E
0

RE
0

dsuJpu2

Seff
dz r dr ~52!

andds is a decreasing function ofnp , Rp becomes a decreas
ing function.

Rp is an increasing function ofnp , as shown in Fig.
13~b!. This is an expected result because the heating me
nism is due to the thermal effect. However, the slope ha
sensitive dependence on the excitation frequency becaus
d
s

FIG. 6. Spatial variation of the absorbe
power density by electrons at four different time
of the rf period for a single-turn antenna.
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FIG. 7. Spatial variation of the electric field
E at four different times of the rf period for a
double-turn antenna.
p

n
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nt is

and
wave-particle resonance is strongly related to the wave
riod and electron transition time@20#.

Figure 13~c! shows the frequency dependence ofRp on
various plasma densities. The frequency dependence ofRp is
similar to the density dependence.Rp is an increasing func-
tion of the wave frequency in the low-frequency region, a
becomes a decreasing function in a sufficiently hig
frequency region. The reason is also quite similar to the c
of the density dependence. As the wave frequency increa
the skin depth decreases, and if the skin depth beco
smaller than the chamber length, then theRp can be ex-
pressed by Eq.~52!.

If the distance between the antenna and the wall of
shielding cap is decreased, the induced current on the
e-

d
-
se
es,
es

e
all

increases. Since the induced current is out of phase with
antenna current, the net current becomes small@Figs. 13~d!
and 14~b!#. There is an optimum chamber length at which t
resonant coupling efficiency is at a maximum@Fig. 14~a!#,
and this result agrees well with the result of the on
dimensional theory@20#.

In Fig. 14~c!, we observe that there is an optimum anten
radius for a given chamber radius. If the antenna radius
creases, the induced current at the chamber wall increa
Also, if the antenna radius decreases, the flux across the
tenna decreases slightly, and the induced plasma curre
also reduced.

The smaller the distance between the plasma surface
antenna, the better the heating efficiency@Fig. 14~d!#. How-
d
FIG. 8. Spatial variation of the magnetic-fiel
componentBr at four different times of the rf
period for a double-turn antenna.
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FIG. 9. Spatial variation of the magnetic-fiel
componentBz at four different times of the rf
period for a double-turn antenna.
th
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on
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eld
ever, the distance is practically restricted by the width of
dielectric window.

Figure 15 represents the dependence ofRp on the phase
difference between two coils for a double-turn antenna. T
shows that the phase difference reduces the resistance o
plasma and also overall power absorption by the plas
This is because the vacuum wavelength of the wave is m
larger than the distance between antennas: The phase d
ence caused by the wave propagation along this distanc
so much smaller thanp/2 that there is no possibility of an
constructive interference effect.

The ponderomotive force potentialsVpmf for the single-
e

is
the
a.
ch
er-
is

and double-turn cases are represented in Fig. 16. The a
lute values of theVpmf are several eV. This result indicate
that the electron ponderomotive force can strongly aff
plasma transport near the dielectric window because
presheath electric field;Te /Lp , Te is several eV, and the
ponderomotive force per unit charge;Vpmf /ds .

IV. SUMMARY

A two-dimensional anomalous skin effect mode excitati
theory of planar-type inductively coupled plasma discha
is developed. Using the calculated electromagnetic fi
r-
FIG. 10. Spatial variation of the plasma cu
rent densityJp at four different times of the rf
period for a double-turn antenna.
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FIG. 11. Spatial variation of the absorbe
power density by electrons at four different time
of the rf period for a double-turn antenna.
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quantities, the plasma resistance and the ponderomo
force potential are determined. The resultant plasma re
tance is a function of the various discharge parameters s
as the plasma densitynp , electron temperatureTe , electron
collision frequencyn, radius of chamberR, length of plasma
Lp , shielding cap lengthLs , excitation frequencyv, and the
position and size of the antenna coil. The ponderomo
force is localized at the skin depth layer, and its magnitud
sufficiently high to affect plasma transport near the dielec
window.

Although the antenna current is a directly measura
quantity, an impedance-matching network should be
cluded for a more complete theory, and thus the ante
current should be determined self-consistently as a func
of the rf power. This work requires calculations of the c
pacitance of the reactor and the inductance of the ante
region. These calculations are in progress, and the re
will be published elsewhere.
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APPENDIX A

Let us consider the one-dimensional infinitely period
system considered in Ref.@20#. It is obvious that, if
]J(z)/]z5hJ(z), then ] f 1(z)/]z5h f 1(z), because

FIG. 12. Dependence of the plasma resistanceRp on the elec-
tron collision frequencyn with neutral atoms. The dotted line rep
resents the collisional formula.
ve
is-
ch

e
is
c

e
-
a
n
-
na
lts

J(z)52ene*dvf 1(z)vu , whereJ[Ju and the characteristic
scale length of the electric field in the infinitely period
system uhu5d. Therefore, we will show that
]J(z)/]z5hJ(z) as long as ]E(z)/]z5hE(z), where
E[Eu . Since

]J~z!

]z
5E

2`

`

s~ uz2z8u!E~z8!dz8, ~A1!

we have

]J~z!

]z
5E

2`

` ]s~ uz2z8u!
]z

E~z8!dz8

52E
2`

` ]s~ uz2z8u!
]z8

E~z8!dz8

52s~ uz2z8u!E~z8!uz852`
z85`

1E
2`

`

s~ uz2z8u!
]E~z8!

]z8
dz8. ~A2!

Therefore, if limz→`s(z)50, then

]J~z!

]z
5E

2`

`

s~ uz2z8u!
]E~z8!

]z8
dz8

5hE
2`

`

s~ uz2z8u!E~z8!dz85hJ~z!. ~A3!

Although limz→`s(z)50 is physically plausible becaus
the effect of the electric field at an infinitely long distan
should be zero, we can also prove it mathematically. It
easy to show that

s~z!5
1

A2p
E

2`

`

sqexp~ iqz!dq5
m1/2

25/2lD
2 I ~z!, ~A4!

wherelD
2 is the Debye length, and

I ~ l !5E
0

`

expF ~2a1 i !l

u
2u2Gduu , ~A5!

wherea[n/v and l[vuzu/v th .
First, let us consider, whenaÞ0,
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FIG. 13. Dependence of the plasma resistan
Rp on np , Te , v/2p, and R. The dotted line
represents the collisional formula.
I ~ l !<E
0

`UexpF ~2a1 i !l

u
2u2GUduu

5E
0

`

expF2a l

u
2u2Gduu . ~A6!

An asymptotic form of the last integration whena l@1 can
be obtained by the method of steepest descent:

I ~ l !'exp~23t0
2!F 2p

6t0
221G , t0[S a l

2 D 1/3 whena l@1.

~A7!

From Eq.~A7!, it is obvious that limz→`I (z)50 when the
collision frequency is not zero.
Next, whena50, let us consider

F~ l ![E
0

`

exp~ i l t !
exp~21/t2!

t
dt. ~A8!

It can be shown that

F~ l !5H I ~ l ! ~ l>0!,

I ~ l !* ~ l,0!.
~A9!

We have

F~`!2F~2`!5 lim
l→`

E
2 l

l dF~ l !

dl
FIG. 14. Dependence of the
plasma resistanceRp on Lp , Ls ,
r c , andzc . The dotted line repre-
sents the collisional formula.
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5 i E
0

`

exp~21/t2! lim
l→`

F E
2 l

l

exp~ i l t !dlGdt
5 iA2pE

0

`

exp~21/t2!d~ t !dt50. ~A10!

Since

lim
t→0

exp~21/t2!50, ~A11!

Eq. ~A10! leads us to

lim
l→`

E
0

`

sin~ l t !
exp~21/t2!

t
dt50. ~A12!

Also, using the partial integration method, we can see th

E
0

`

cos~ l t !
exp~21/t2!

t
dt5

1

l E0
`

sin~ l t !
exp~21/t2!

t2

3S 12
2

t2Ddt. ~A13!

Since

FIG. 15. Dependence of the plasma resistanceRp on the phase-
differentDf for a double-turn antenna.
lim
t→0

exp~21/t2!

t S 12
2

t2D50, ~A14!

we can show similarly that

lim
l→`

E
0

`

cos~ l t !
exp~21/t2!

t
dt50. ~A15!

Equations~A12! and ~A15! yield

lim
l→`

I ~ l !50 whenn50. ~A16!

APPENDIX B

Let us assume that the fields generated in the plasma
gion areEa,Ba andEb,Bb. Since each set must satisfy Max
well’s equations, we have

¹•dB50, ¹3dE2 ikdB50, ~B1!

¹•dE50, ¹3dB2 ikdE5
4p

c
dJ, ~B2!

where

dE5Ea2Eb,

dB5Ba2Bb,

dJ5Ja2Jb

and

dJ52pE
0

RE
2`

`

s~r2r 8!•dE~r 8!dz8r 8dr8. ~B3!

If the tangential components ofE or B are given as the
boundary conditions then Eq.~B2! straightforwardly goes to
the following relation:

E dJ* •dE dr1
iv

4pEV@ udEu22udEu2#dr50. ~B4!

Relation~B5! shows that the real part of the first term shou
-
FIG. 16. Spatial variation of the ponderomo
tive potentialVpmf for single-turn~a! and double-
turn ~b! antenna cases.
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ReF E dJ* •dE dr G50. ~B5!

On the other hand, since the convolution relation gives

J~r ,z!5A2p (
m51

`

J1~pmr !Fs0em0
2

1 (
n51

`

snemncos~qnz!G ,
~B6!

we have
m

m

c

Y

. J

c

h

J.

a

al
ReF E dJ* •dE dr G5 ~2p!3/2

R2J2
2 (

m
FRe@s0* #udem0u2

4

1 (
n51

`

Re@sn* #udemnu2G . ~B7!

Since the sign of Re(sn* ) is equal to Im(Zp) and Im(Zp) is
always greater than zero,demn should vanish.
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ys.
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