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Two-dimensional nonlocal heating theory of planar-type inductively coupled plasma discharge
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A two-dimensional heating theory of planar-type inductively coupled pla@@R) discharge is developed.
The theory includes the anomalous skin effect with an arbitrary value of electron collision frequency and
source current. Based on the uniqueness theorem of wave equation, wave excitation by the source current is
determined. With the calculated electromagnetic fields, plasma resistance is expressed as a function of various
parameters such as plasma density electron temperaturg,, radius of chambeR, length of plasmd.,
shielding cap length, electron collision frequency, excitation frequencw, and the position and size of the
antenna coil[S1063-651X97)14606-3

PACS numbgs): 52.80.Pi, 52.56-b, 52.75--d

I. INTRODUCTION However, all the above studies are only for the one-
dimensional case, and a realistic current source is not in-
cluded. The lack of a general heating formula, which is valid
?or an arbitrary chamber size, electron collisions, and the
position and size of antenna coil, has hindered an accurate
modeling of the plasma discharge phenomena. The first dif-

Inductively coupled plasmé@CP) sources have been the
subject of many experimental and theoretical investigation
[1-10], owing to the fact that a high-density plasma with
good uniformity is easily obtained under low pressure with-

out an external magnetic field. Two types of ICP reactors ar‘?iculty in two-dimensional modeling is that the radial normal

available[11], classified according to shape and the positiony,,je of an electron kinetic equation is not amenable to co-
of the coil. One type of reactor has a planar coil at the top ofyeration with the eigenmode of the wave equation. This has
the cylindrical chambefplanar type, also called TOP1-9],  peen overcome in this work by assuming that the radius of
and the other one has a solenoidal coil wound at the side @fe reactor chamber is sufficiently larger than the skin depth,
the chambefsolenoidal typg[10]. The ICP reactor can be a5 js the case with the usual TCP discharges. The next prob-
easily scaled up to accommodate a larger wafer size compajem is the determination of excitation coefficients of the
ing to the other reactoréHelicon, electron cyclotron reso- wave normal mode by the external coil current. The usual
nance, etg.because the system is substantially simpler.  treatment of the wave excitation problem is based on the
For the electron heating mechanism of ICP discharge, colinduction theorenf21] and the effective current sheet model
lisionless heating is widely accepted as the primary mechd22]. However, the induction theorem originates in the
nism on sustaining low-pressure inductive radio-frequencyniqueness theorem of the Maxwell equations, and thus the
discharges. It has also been suggested, in both planar-typmiqueness theorem should be assured in this case. We show
[12] and solenoidal-typ@l0] reactors, that the collisionless that the uniqueness theorem can be proved in this problem,
electron heating mechanism is a warm plasma effect anal@and that the effect of the antenna current on the plasma can
gous to the anomalous skin effect in metals. The anomalouse described by an effective surface current. Utilizing the
skin effect is a transverse analog of the Landau dampingaxwell equations, the effective surface current is self-
from the standpoint of wave-particle interaction in plasmaconsistently determined from the real antenna current source.
[13]. The electrons gain energy through the resonant cou#e present an analytic and two-dimensional solution of the
pling with the transverse electromagnetic waves. anomalous skin effect in terms of the well-known conductiv-
Although theories of collisionless heating of inductive ity of the homogeneous hot plasma and external coil current.
discharges have not been well establishieti-18 until now,  The perfect electron reflecting boundary condition at walls is
there is some progress in understanding of the anomaloudilized to convert the finite-sized nonlocal heating problem
skin effect on plasma: The anomalous skin effect on the halinto a periodic system with an infinite range. This equivalent
infinite plasma was studied by Weibd5]. In addition, the infinite periodic system problem is then described by the
bounded plasma with a symmetric wave and, thus, currentonductivity of a homogeneous plasma and an effective cur-
source, has been investigated by Reynolds, Blevin, and Thaent sheet. The effective current sheet is self-consistently de-
nemanr 16] and Sayaso{19]. However their results are not termined from the real antenna current by manipulating the
directly applicable to a planar-type ICP discharge reactorMaxwell equations. Once the electromagnetic fields are de-
because it has current source only at one side of the plasntarmined, then the plasma impedance can be calculated from
boundary. The modulation effect of the wave electric field bythe field quantitie$23]. The resulting plasma impedance be-
the conducting boundary at the other side of the plasma hasomes a function of various parameters such as plasma den-
been investigated by Yooet al. [20]. sity n,, electron temperaturd,, radius of chambenmR,
length of plasmd.,, shielding cap lengti. ¢, electron col-
lision frequencyv, excitation frequencyn, and the position
*Also at Department of Physics, Korea Advanced Institute of Sci-and size of the antenna coil. On the other hand, it was
ence and Technology, Taejeon 305-701, Korea. pointed out that the electron ponderomotive force can affect
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Shielding Cap the displacement current in the direction perpendicular to the
antenna surface. Therefore, a self-consistent treatment of the
Ant (0 -1) (& -1) iteration scheme, such as performed in R2€], is needed to
ntenna

include the capacitive field effect. However, under the prac-

tical TCP discharge condition, the dominant electron heating

; — source is still the inductive part of the electric field rather
R, 0) than the capacitive part, and the capacitive field is usually
(k) =

Faraday shielded. Therefore, only the inductive field is con-
sidered in this work.

Assuming that all physical quantities hagesymmetry,
thusE;,, the two-dimensional wave equation describing the
inductive electric field component having only a
#-component becomes

1
vacuum pump VZ(E40)+ k’E ,0=V?(E,) 60— CEg0+ K’E 0
FIG. 1. Schematic diagram of the TCP reactor and the coordi- A7w
nate system adopted in this work. -2 iJ o, @

the ambipolar diffusi(_)n in Ref§24,25. However the lack of 100 is the excitation frequencys=w/c, andJ is the
an accurate calculation of the ponderomotive force has hinéum of all current densities available in the reactor

dered an understanding of the effect of the pondgromotive If a solution of Eq.(1) is obtained with given boundary

force on the plasma transport. The exact calculation of the,itions, then the magnetic field components can be esti-

electric field in this work make possible more detailed un-ated from

derstanding of the role of the ponderomotive force in the

plasma discharge. i 9E,(r,2)
This paper is organized as follows. In Sec. Il, the wave B.(r,z)= — ——— )

equation and boundary conditions are described, and the so- Kk

lution is presented. The numerical results for a simple an- _

tenna coil structure and discussions are presented in Sec. lIl. i1

The summary of this work is given in Sec. IV. Finally, we Br.2)== 7 or[FE«r2)], &)

present a mathematical verification related to the character-

istic scale length of perturbed distribution, and a proof of theand the power absorbed by electrons is

uniqueness theorem of the Maxwell equations in the present

problem in the Appendixes. 1
Pas= R Ef J;-E dr}, 4
\%

Il. THEORY
whereJ, is the plasma current density amlis the plasma
volume.

A schematic diagram of the TCP system and the coordi- All chamber wall materials are assumed to be perfect con-
nate system adopted in this work is presented in Fig. 1. Thductors, and thuk,=0 at all chamber surfaces. There is no
radio-frequency(rf) power generator is connected via a direct method to obtain the solution of E() that is appli-
matching box to an antenna which is placed just above &able both in antenna and plasma regions. Therefore, at first,
dielectric plate. The time-varying magnetic-field flux inducesthe wave equation is solved in each region separately, and
an electric fieldor equivalently, an electromotive forgeand  then the solutions for two regions are matched without a loss
the electrons, which gain energy from the induced electriof self-consistency. An additional boundary condition is
field, ionize the neutral atoms. For convenience, the whol@eeded at the surface between the two regions. As the tem-
chamber space is divided into two parts: the antenna regiomoral boundary condition, let us takeBa(r,0) [or equiva-
which is surrounded by the shielding cap, and the plasméently, a surface current densitg=c/47B,(r,0)] at z=0.

A. Maxwell-Bolzmann equations and boundary conditions

region. Then the solutions in each region are obtained with
By using Helmholz’'s theorem for a vector, the electric B,(r,0). At this time, the question of the uniqueness of the
and magnetic fields can be resolved into irrotatioffi@hgi-  solution with this boundary condition arises. In the antenna

tudinal or capacitiveand solenoidaltransverse or inductiye  region, it is obvious that the solution is uniquely determined
parts. SinceV-B=0, the magnetic field is always induc- with the tangential component of magnetic fi¢®il]. How-

tive, while electric field has the inductiveEf,) and capaci- ever, in the plasma region, the uniqueness should be
tive (E.,) components. The important roles of the capacitivechecked. We give the proof of the uniqueness of the solution
field are of two kinds: The first one is an active participationin the plasma region in Appendix B. The boundary condition
in the electron heating mechanism of plasma at low powerset is a mixed one which is generally much more difficult to
The next one is the difference between the conduction cuandle than the normal-type probld@8]. After solving the
rent flowing on the antenna and the input current building upvave equation1) in each region, the value d,(r,0) is
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determined as a function of coil current by the condition ofpressed with the conductivity of an infinitely homogeneous

electric field continuity az=0. plasma. Therefore, if we neglect the teuywf,/dr in the
linearized Bolzmann equation, and the definitiongEgfand
B. Normal mode in the plasma region J,, are extended into the domains 0 andz> L, in a similar

manner to the one-dimensional case, the current density can
be expressed with the conductivity of an infinitely homoge-
neous plasma as

The wave equation describing the inductive electric field
in the plasma region becomes

52E5+ 1 0E, EgJr &2E0+ 2 _ 47m_J 5 B
a2 T o r2 T g2 THEeT T T e ® Jp(r,z)=J o(z—2')E4(r,z")dZ, (11
whereJ,, is the plasma current density. As previously stated,
the boundary conditions are where o(z) is the one-dimensional conductivity of the ho-
mogeneous plasma, which has translational invariance along
E¢(R,2)=0E(r,Lp)=0 and z, and its Fourier component is
I IE,(r,2) 1 (= i w+iv
Br(l’,O):BOZ—— . (6) O =— a(z ef|qzdzz___pq_DZ R
A P N B Jm 8m a P alow)’
(12

To obtain a self-consistent solution of E®), J,, should be
expressed in terms @&, via a conductivity of plasma. With \yhere w, is the plasma frequencyp, is the Debye wave
the time-varying factor exp{iwt), the plasma current den- . wper defined byip= \/mzl—Te and Z, is the plasma
sity can pe expressed through a nonlocal conductivity 0tﬂispersion function27] with glectron der‘;sityne. In this
plasmaX in general as infinitely periodic system, the electric field is not differen-
tiable atz=z,=nL,, wheren is an arbitrary integer, and
Jp(r,z)= j 3(r,z,r",2")Ey(r',z2")dr'dz". (7)  thus the second derivative Bfy do not have a finite value at
Vp these points. As in the one-dimensional case, the wave equa-
tion, which properly describes all points including the dis-
continuities of the derivative dt,4, can be obtained by add-
ing &-function terms on the right-hand side of E§) as

The conductivity of plasma is to be calculated from the lin-
earized Boltzmann equation as

of of, eE
—ia)fl-l-vra—rl-l—vza—zl-l——gu(,foz—yfl, ® PEy 10E, E, &,

T +-— + K2
€ aZ Py Tyt gz TR
where the distribution functioh=fq+ f4, fo is the Maxwell-
ian velocity distribution functionf, is its perturbed part, Ak )
T, is the electron temperature,is the collision frequency of =——; Jp 2 Kn;m B/(r,z,+0)d(z—z,) (13

electron with neutral atoms, and, v,, andv, are ther,
z, and 6 components of the electron velocity, respectively.whereé(z) is the Dirac delta function, and
Since w is much larger than the ion plasma frequency, the
ion motion is neglected. B,(r,z,+0)=1limB,(r,z,+¢),
In the typical ICP discharge condition, the term of £—0
v, df/dr is much smaller thawn,df/dz term because
— = — = =
vt lar vgdfilar o B,(r,z, 0)—8I|LnOBr(r,zn €) B,(r,z,+0) fore=0.

vt 1oz vm&fllaz~§<1’ © (14

wherev,,=2T./m,, & is a skin depth, and, is the elec- Ey and J, can be expanded by the Fourier-Bessel series
tron mass. A proof obf,/dz~f, /8 is given in Appendix A.  Without loss of generality as

If the term ofv,df/dr is neglected in Eq(8), the conduc- "

tivity obtained from this equation is a function of orgyand

the termuv,df,/dz requires a boundary condition for the E(,(r,z)=m2:1 J1(Pmf)
electron reflection at the wallsB=0 andz=L,. Then the
current density becomes

[’

o
7+E ePlcogq,2) |,
n=1

i(p) “

. 'S#%cos(qm}, (15
n=1

L 3(r2)= 2 Jx(Pnl)
Jp(r,z)=fO 2(z,2')Ey(r,2")dZ . (10
whereJ; is the first-order Bessel functiop,,= a; /R, and
As shown in the one-dimensional theory, if the perfectly re-d,=nw/L,, and wherex, , is themth zero ofJ,. The Neu-
flecting boundary condition is adopted, the finite-sized probmann functionN,(pr) disappears in Eq(15) in order to
lem can be converted to a periodic system problem with amaintain finite values ok, andJ, atr =0. The components
infinite range alongz, and the current density can be ex- of the Fourier-Bessel series?) and (") are defined by



4 Lp (R
(P) —
€mn mfo JO E,,Jl(pmr)cos{qnz)r dr dz,

j = WJ f Jpdi(pmr)coggyz)r dr dz,

2( A, m)
(16)

where J, is the second-order Bessel function. The relation

betweere(” andj ") is obtained from the convolution of Eq.
(10) as

= V2monely, (17)

whereonzaqn. If Egs. (15) and(17) are substituted into Eq.
(13), we have

—(q%—:@)Ea—mEn pZeP 31 (pmr)cog gn2)

4k

——|J p—2iK E B,(r,z,+0)8(z—z,).

(18)

And, if Eq. (18) is multiplied by cosg,2) and integrated from
—L, to L, after being substituted into E¢L5), we have

- 2 (ar+ph)edda(par)
Ak -
=— \IZWTl O'nmE:l eg’%‘ll(pmr)

2ik
- BN —(-1"BuN], (19
p

with definitions of
Buw=B(r,L,—0)=—

B, (r,L,+0). (20)

el?) is obtained by multiplingJ;(pnr) by Eq.(19) and by
integrating from 0 toR as

2ik bom—(—1)"by,
L,

elP)

mn

: 21
; D, (21)

where by, and by, , are the components of the Fourier-
Bessel series dBy(r) andB,,(r) defined by

bom= mf JBO(r)Jl(pmr)r dr,

4 Lp (R
bw,m_mjo fo Bw(r)Ji(ppr)rdr, (22
and where
2 2 ) Ak
Dmn=Pm*dn—« —TI\/27TO'n. (23
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To complete the calculatiorB,,(r) should be evaluated in
terms ofBg(r). B,(r) is determined from the boundary con-
dition E,(r,Lp)=0 as

Eo(r,L,)=0= 2 3 pmr){ +2 elP)

2i Kk S (—1)"ogm—b
=—L—E J1(Pul) 2 D0m Zr
p m=1 n=0

mn

(24)

If Eq. (24) is multiplied by rJ,;(p,r) and integrated from
0 to R, we have

s

bW m— bOmSgL) ' (25)

where

(="
Dmn .

1
_nZOD

2
S(m ) =
n=0

(26)

Substituting Eq.(26) into Eq. (21), we can obtain the final
form of the solution as

elP)—

mn

2|Kb0m{ ( 1)n3<13>
Ly Dmn Sy

Hereb,, (or surface current densityeflects the source cur-
rent.

(27)

C. Excitation of the anomalous skin effect mode
by source current

To complete the calculatiot, ,, has to be expressed as a
function of the coil current density.(r,z). If we solve the
wave equation or Maxwell equations in antenna region with
givenB, as the boundary condition at 0, then the value of
E4(r,0) may be obtained as a function &f andB,. Then
B, can be determined by the condition of continuity of the
electric field atz=0.

However, in the present work, we use a simple direct
method of calculatindge,(r,0) as a function ofl. with the
boundary condition of

E4R,2)=0, E4r,—Lg=0 and
| IE4(r,2)
B/(r,0)=Bo=——— i (28)

A similar method is used to obtain the fields by a localized
source in the wave guid@3]. First, we consider eigenmodes
of the sourceless wave equation for inductive fields which
obey the boundary conditions exceptzat0:

Em=J1(Pmr)sinf Bm(z+Ls)]10, (29

Bn=B; n+B,mz (30

where
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i JEm 19 Notice that the above scheme yields electric fields only at the
Brm=— P 7+ T 0_r(rEm) surface atz=0, but this solution includes the effects of the
surface current over the shielding cap and the plasma current
through the boundary condition of E¢B0). Matching the

[
=~ BmJa(Pmr)cOSH Brn(z+ L9 ], (3)  above expression for the electric fieldzat 0 with the solu-
tion of the wave equation with the source of the plasma
i 19 current density, we obtaibg , as
Bz,m_ KT or (rEm)- (32) oL B 1
s (shLy)
bO,m Jc m Smr(ﬁm s)+2 COSf(ﬁm S)Sm} '
Here B,= \/pzm—K and B, is a real number because the c
chamber radius is less than the vacuum wavelengthEAl (39
andBy, obviously satisfy the source-free Maxwell equations, ..
and the boundary conditions of E@O0), except az=0. The
arbitrary vacuum field€,=E,0 and B=B,r+ B,z, which (S1)2— (sthy2
satisfy the boundary conditions of E@8), can be expanded :% (40
by E,, and B, without loss of generality. Next we use the St
identity of Combining Egs(27) and(39), we have
4qr
V-[EgXBrn—EnXB]= ——Jo-En, (33 Ai i jisgLs> 2)
=T p— [1 (1" (1)} Sinh(Bls)
which follows from the source-free Maxwell equations for P m
E., andB,,, and the Maxwell equations with the source of m -t
J. satisfied withE, and B. Integration of Eq{(33) over the +27— coshiBuls) Sy (41)
volume V¢ bounded by a closed surfack leads, via the P
divergence theorem, to the result From these obtained electromagnetic fields, the imped-
. ance of plasma can be determined:
j [EsXByn—EnXB]-nda= —J Je-Endr, (34
S C Jvq 2
ZP=— I (—j S-nda
wheren is an outwardly normal direction. With the assump- Sp
tion of perfect conductor walls a= — L andr =R, the part
of the surface integral over the shielding cap vanishes. Only = —| —_— E J am) , (42
=1

the integrals over the surface &0 contribute. Hence Eq.

34) can be transformed to .
34 whereS, denotes the interface between the plasma and an-

R tenna region, andis the input current. If we assume that the
Jo [Eu(r,0)B; m(r,0) —Ep(r,00B,(0)]r dr antenna size is negligible, then we can write
Je(r,2)=2l¢jo(r—rg;)8(z—z ), and, since

4Wfo fR
-— J.(r,2)E(r,2)r dr dz. (395 (shLy) arg .
CJ-LsJo jort = Wg(am)Ic,j‘ll(pmrc,j)Slnk[ﬁm(l-s"'zc,j)]:

SinceEy(r,0) can be expanded by the Fourier-Bessel series (43

without loss of generality as _
the plasma impedance becomes

o0

Eo(r,00= 2, amnds(puf), (36) 1672
m=1 m m Z(P)—_|_2WE Sm

B c pN m=1
and by substituting expression E6) into Eq. (35 and

integrating it forr from 0 to R, we have | Er](;;” ;pnzrzc;;)s/izhz)[lgmi(l_;lzc)); >
Sinh( BrLs) +(2Bm/L ) cost Bl s) S
K |4
an=i g o T jents SeCmBL)_tannﬁmLs)bO,m}i —ZP)(ny Te, . ,R Ly, Le e 20). (44)
m
(37)

The & function assumptiond (r,z)=X;l.;(r —r¢;)o(z
where —Z.;) yields an infinite value of electric field at point
(r¢,zo), and thus the self inductance of the antenna becomes
(shlo R infinite. Hence if we want to calculate the total impedance of
lem =L RZ2(a ) 3e(r,2)J1(Pml) the reactor, the antenna-size should be considered. However,
sR°J5(aym) -1 Jo . . . . . . .
since the main objective of this work is to investigate the
Xsinf B(z+Lg)]r dr dz. (38)  functional dependence of plasma power absorption on the
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ot =0 ot=(12)n
Bl )
9 8
2 Z
== =)
& &
FIG. 2. Spatial variation of the electric field
E at four different times of the rf period for a
ot o ot =(/2) single-turn antenna.
5 5
2 2
= 1 =
I 2
g g
®, g,
g O ’ 2

67% i
remy 0 0 2™

various operationa_ll parameters an_d plasma parameters, we 872 w O tanh( vy ly)
keep our assumption of infinitely thin antenna. zPeh— _j—— > — TR
We note that the plasma impedance is a function of nine ¢ Ria=1 Ym
variables such as the plasma parametgrsT,, andv, the
geometric parameter®, L,, andL, and the antenna re-
lated parameters, r., andz.. Although the summation on
m in Eq. (44) is rapidly converging, the convergence of the
sums om in S{ andS{? for largem is not so good because
D~ P2 +02 for largen, and thusD,,, is not significantly ~ where y5=ps— k?+ (w}/c?)[1+i(v/w)] 2.
increased untilg,>p,,. Instead of direct summations, we  The ponderomotive force potential can be calculated as
rearrange the summations and sum the differences between
the rearranged series and their asymptotic series: If we define

« 2jcm:,j‘]i(pmrc,j)Sim‘iz[lgm(l-s"'Zc)]
|Sinf(BrLs) + (B! ym)COSH Bl s)tant( yL )
(48

2

2
mef:Z W|E|2- (49)

o0

1 1

S + , S=
m 2DmO nzl Dm2n m nzl Dm2n—1

. (49 We notice that the ponderomotive force study in the present

model is not self-consistently treated, because the response
of the electrons for the ponderomotive force is not included.
We retain a more complete derivation of the ponderomotive
force potential as a future work.

then

Sn'=Sh+Sh. Sw'=Shn—Sh (46)

; : 0
and asymptotic series & andS;, are Il. NUMERICAL RESULTS AND DISCUSSION

©

1 Lp [1+eXIO(—ﬁmLp)]2 Figures 2—6 show the spatial variations of the electric
2 field E, the magnetic-field component8, and B,, the

plasma current density,,, and the power density absorbed

+ - 1
2B% =1 BAT A5, ABm 1—exp(—2BnL,)

€,asp_
S, =

> 1 L, [1—exp—BmLy)]?
,asp_ =—F :
W R By % 1ew 2By

1)

We find that the series of the difference betwegih and
SHAP (S, and S5 is rapidly converging.

It is interesting to compare the presetiP) with its colli-
sional case. For the limited case gf w, it is easily shown

by electrons at four different times of the rf period for the
case of the single-turn antenna. The default parameters in
these calculations aren,=10"* cm 3, T,=5 eV,
0/27m=13.56 MHz,»=0,R=10 cm,L,=5 cm,L=10 cm,
re=7 cm,z.=—1 cm, andl .=50 A. We can see that there
are minimum amplitude points for the electric and magnetic
fields, and large phase changes occur at these fBigss 2,

3 and 4. This phenomenon is also observed in the one-
dimensional theory{20], and never occurs for collisional

that the collisional formula of the plasma impedance beheating with so small a chamber length relative to the

comes

vacuum wavelength of the rf wave. As expected from Max-
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ot=0 ot=(112) n

T
r

Re [B  exp(-iot)] (G)
Re [B exp(-iot)] (G)

FIG. 3. Spatial variation of the magnetic-field
componentB, at four different times of the rf

of =1 ot=(372) period for a single-turn antenna.

r
r

Re [B exp(-iot)] (G)
Re [B_ exp(-iot)] (G)

well equations, the magnetic field is out of phase with theby electrons at four different times of the rf period for the
electric field andB, has a node point near the antenna posi-double-turn antenna case. The default parameters are the
tion (Fig. 4). Although the real part of the plasma conductiv- same as in the case of a single-turn antenna, excgept!
ity is not zero while collision frequency is zero, the phase ofand 7 cm. The phase difference between the two coils of the
the J, is nearly out of phase with thE (Fig. 5. This is  antenna is assumed to be zero. The main features are seen to
because the imaginary part of the conductivity is still greatebe similar to the single-turn case. Actually the conduction
than the real part. With this infinitely thin antenna, the de-currents flowing on the antenna surface can be varied be-
posited power density is localized near the antenna positionause there are capacitive electric field and the displacement
(Fig. 6). current due to this capacitive fie[@6]. The investigations
Figures 7—11 represent the spatial variations of the eledncluding the effect of the capacitive field will be the subject
tric field E, the magnetic field componenB andB,, the  for our future work.
plasma current density,,, and the power density absorbed  Figures 12—14 show the dependence of the plasma resis-

ot =0 ot=(12)n
g 8
& H
o )
N N
=) &,
e &
FIG. 4. Spatial variation of the magnetic-field
componentB, at four different times of the rf
o ot=(312) period for a single-turn antenna.
2 g
~ o
=) 3
& 5
4
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ot=(1/2)

8 5
(< >
= ZQ
o 2
FIG. 5. Spatial variation of the plasma current
densityJ, at four different times of the rf period
for a single-turn antenna.
ot=(3/2) n
- ot =n —_
5 5
> 2
= =
- =,
2 &
tanceR, on various parameters for the single-turn antenna. R (Lp|Jdp|?
p 2 3 PIYp
The default parameters ame,=10" cm 3, T,=5 eV, Ry oo Sur dz rdr, (50)
€

w/2m=13.56 MHz,»=0, R=10 c¢cm,L,=20 cm, Ls=10

cm, re=7 cm, andz;=—1 cm without any specification. where3 o is the effective conductivity of plasma, add is

We notice that, in Figs. 12—14, there are some cases Whefgyfined by

the values of the parameters do not satisfy the condition

6=<L. In that case, the radial electron motion can change the

resu_lts. _ = Amk Im[ZJ]’
Figure 12 shows the dependence of the plasma resistance

R, on the collision frequency for different plasma densities. . . .
p m
The dotted line is the collisional form of the real part of Eq. whereZ is the surface impedance of plasi®]. Since the

. 2 . . . .

(48). We observe that there is a great disparity between th Iasma current densityd,| 1S the. more rapldly increasing

;. < . unction of n, thanX ., R, is an increasing function af
collisional and collisionless formulas whemw is small, . p b P . . P

. . o in the low-density region. At high plasma density, since
while the collisionless form goes over to the collisional form
as v/w becomes large. We can also see that the larger the 2

. . ; R (55]J

plasma density, the greater the disparity. Ry P dzrdr

The dependence &, onn,, T, w/27, andR is repre- 0Jo Zer
sented in Fig. 13R, increases for the low-density region,
and after meeting a maximum value it decreases as the deandd; is a decreasing function af,, R, becomes a decreas-
sity increases. The reason for this is similar to the case of thimg function.
solenoidal-type discharge in R¢l4], and it is as follows: In R, is an increasing function of,, as shown in Fig.
the low-density region, since the wave deeply penetrates thE3(b). This is an expected result because the heating mecha-
plasma, the skin deptld, is nearly equal to the chamber nism is due to the thermal effect. However, the slope has a

c |z4?

(51

(52

length, so that sensitive dependence on the excitation frequency because the
ot=0and ot=n ot=(172)n and ot=(G/2)n

5 8

= B . -

< ~ FIG. 6. Spatial variation of the absorbed

2 = . . .

22 E power density by electrons at four different times

k34 .§ of the rf period for a single-turn antenna.

§ B

K E
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ot =0 ot=(1/2)n
8 8
Z (2
=, =
4 &
FIG. 7. Spatial variation of the electric field
E at four different times of the rf period for a
double-turn antenna.
ot=(32)n
—_ ot =n —_
8 8
2 > 0
3 g 3
5 =4
8 5
=) =2}
2 g ° 74

8 1
T'(cm) 1070 2 (cm)

wave-particle resonance is strongly related to the wave pdncreases. Since the induced current is out of phase with the
riod and electron transition time0]. antenna current, the net current becomes shiddls. 13d)

Figure 13c) shows the frequency dependenceRyfon  and 14b)]. There is an optimum chamber length at which the
various plasma densities. The frequency dependenBg f  resonant coupling efficiency is at a maximufig. 14a)],
similar to the density dependend®, is an increasing func- and this result agrees well with the result of the one-
tion of the wave frequency in the low-frequency region, anddimensional theory20].
becomes a decreasing function in a sufficiently high- In Fig. 14(c), we observe that there is an optimum antenna
frequency region. The reason is also quite similar to the casedius for a given chamber radius. If the antenna radius in-
of the density dependence. As the wave frequency increasesfeases, the induced current at the chamber wall increases.
the skin depth decreases, and if the skin depth becomeXso, if the antenna radius decreases, the flux across the an-
smaller than the chamber length, then g can be ex- tenna decreases slightly, and the induced plasma current is
pressed by Eq52). also reduced.

If the distance between the antenna and the wall of the The smaller the distance between the plasma surface and
shielding cap is decreased, the induced current on the wadintenna, the better the heating efficiefifjg. 14d)]. How-

ot =0 ot=(1/2)
g 9
5 0
=) @
& &
FIG. 8. Spatial variation of the magnetic-field
componentB, at four different times of the rf
of =1 ot=G/2)n period for a double-turn antenna.
2 S
£ 3
E, Z
) @
& &
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ot =0 ot=(12) n

r4

Re [B_ exp(-iot)] (G)

Re [B_ exp(-iot)] (G)

FIG. 9. Spatial variation of the magnetic-field
componentB, at four different times of the rf

period for a double-turn antenna.
ot=n wt=(3/2) 1

z

Re [B_ exp(-iot)] (G)

0 s
2468 723
R 1070 )
(cm) (™

ever, the distance is practically restricted by the width of theand double-turn cases are represented in Fig. 16. The abso-
dielectric window. lute values of theV,,; are several eV. This result indicates
Figure 15 represents the dependencé&pfon the phase that the electron ponderomotive force can strongly affect
difference between two coils for a double-turn antenna. Thiplasma transport near the dielectric window because the
shows that the phase difference reduces the resistance of theesheath electric field-T./L,, T, is several eV, and the
plasma and also overall power absorption by the plasmaonderomotive force per unit chargeV g/ ds.
This is because the vacuum wavelength of the wave is much
larger than the distance between antennas: The phase differ-
ence caused by the wave propagation along this distance is
so much smaller tham/2 that there is no possibility of any A two-dimensional anomalous skin effect mode excitation
constructive interference effect. theory of planar-type inductively coupled plasma discharge
The ponderomotive force potentialg,,; for the single- is developed. Using the calculated electromagnetic field

IV. SUMMARY

ot =0 ot=(1/2) ©

p

Re [J exp(-imt)] (A/cm2)
p

Re [] exp(-iot)] (A/cm2)

FIG. 10. Spatial variation of the plasma cur-
rent densityJ, at four different times of the rf
period for a double-turn antenna.

ot = ot=(32)n

p

Re [J exp(-iot)] (A/cm2)
p

Re [J exp(-iot)] (A/cm2)
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ot=0and ot=7 ot=(12)n and ot=(3/2)n
@ 20 % 40
2 9
E s B 30
S o FIG. 11. Spatial variation of the absorbed
2 10 Z 20 . . .
iz g power density by electrons at four different times
%: 5 < 10 of the rf period for a double-turn antenna.
% 0 5 g o
~ 03 P 1 £ 073 7 2

1

3
I (cmy F1070 (o) 2 (cm)

quantities, the plasma resistance and the ponderomotivi(z)=—en,fdvf,(z)v,, whereJ=J, and the characteristic
force potential are determined. The resultant plasma resiscale length of the electric field in the infinitely periodic
tance is a function of the various discharge parameters sugystem |7|=6. Therefore, we will show that
as the plasma density,, electron temperaturg,, electron  53(z)/9z=5nJ(z) as long as JE(z)/9z= nE(z), where
collision frequencyv, radius of chambeR, length of plasma E=E,. Since

Ly, shielding cap length, excitation frequency, and the

position and size of the antenna coil. The ponderomotive 33(2) %

force is localized at the skin depth layer, and its magnitude is = f o(|z—2'|)E(z")dZ, (A1)
. . . . Jz —

sufficiently high to affect plasma transport near the dielectric

window.

Although the antenna current is a directly measurableve have
guantity, an impedance-matching network should be in-

cluded for a more complete theory, and thus the antenna 33(2) = do(|z—2']) e
current should be determined self-consistently as a function 9z fﬁmTE(z )dz
of the rf power. This work requires calculations of the ca-

pacitance of the reactor and the inductance of the antenna = do(|z—2'|) o
region. These calculations are in progress, and the results :_f_mTE(Z )dz

will be published elsewhere.

=

=—o(lz=2'DE)]

7/=—
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Therefore, if lim_..o(z)=0, then
APPENDIX A
Let us consider the one-dimensional infinitely periodic 3(2) :J'w 0(|Z_Z/|)(9E(Z/ )dz’
system considered in Ref20]. It is obvious that, if Iz —o Iz

dJ(2)!19z=nd(z), then o9f(2)/9z=nf(2), because .
= nfiwo(|z—z’|)E(z’)dz’ =7J(2). (A3)

1.5

Although lim,_,o(z)=0 is physically plausible because
the effect of the electric field at an infinitely long distance
should be zero, we can also prove it mathematically. It is

1.0 easy to show that

R ()

1 (e 112
U(Z):EfquexquZ)dq:mHZ), (A4)

0.5
;o n,= 1011 ¢cm-3
i where\3 is the Debye length, and
0.0k . . . - .
0 1 2 3 4 5 o (—a+i)l  ,ldu
0 u u

FIG. 12. Dependence of the plasma resistaRgeon the elec-
tron collision frequency with neutral atoms. The dotted line rep- Wherea=v/w andl=w|z|/vy,.
resents the collisional formula. First, let us consider, whea+ 0,
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An asymptotic form of the last integration wheri>1 can
be obtained by the method of steepest descent:

I(I)~exp(—3t3)

From Eq.(A7), it is obvious that lim_,..1(z)=0 when the

al

2
6t07— 1

collision frequency is not zero.

0.6

, t05<7

05}

04}

03}
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FIG. 13. Dependence of the plasma resistance
R, on n,, T., o/2m, andR. The dotted line
represents the collisional formula.

Next, whena =0, let us consider

F(I)Efxexp(ilt)

0

It can be shown that

HD=[

I dF(l)
| dl

We have

0.6 . : :
(b) @27 = 13.56 MHz =
05}
04t ®/27 = 100 MHz
g 03
* 02l
/27=1 MHz
0.1}
0.0 .
3 6 9 12
Ls (cm)
1.0 . .
[CH)
08 /27 = 13.56 MHz
06}
g @27 = 100 MHz
o™ 04f
oal @2n =1 MHz
0.0
-8 -6 -4 2 0

z, (cm)

10
I(1)*

F(o)—F(—o)=li
() —F( )fﬂj

_ 2
wdt. (A8)

(1=0),
(1<0). (A9)

FIG. 14. Dependence of the
plasma resistancB®, on Ly, L
re, andz.. The dotted line repre-
sents the collisional formula.
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0.0 05 10 15 2.0
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FIG. 15. Dependence of the plasma resistaRg®n the phase-
different A ¢ for a double-turn antenna.

im[fllexp(ilt)dl}dt

—

i | ewg — 142
|Joexp( 1h )ll

=i \/ﬂfwexr( —1/?)8(t)dt=0. (A10)
0

Since
lim exp(— 14£2)=0, (A11)
t—0
Eqg. (A10) leads us to
(> exp(—1i?)
I|mf sm(lt)fdho. (A12)
|—>m 0
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~exp(—14?) 2
im——— 1- | =0, (A14)
0 t t
we can show similarly that
(> exp( — 11t?)
I|mf cos{lt)fdho. (A15)
| —o0 0
Equations(A12) and (A15) yield
liml(1)=0 whenyv=0. (Al6)

| o0

APPENDIX B

Let us assume that the fields generated in the plasma re-
gion areE?,B? andE®,BP. Since each set must satisfy Max-
well's equations, we have

V-6B=0, VXSE—ikéB=0, (B1)
V- 5E=0, VX5B—iK5E=4T7T5J, (B2)
where
SE=E?-E°,
sB=B3-B",
8J=32-0P
and

R [
5J=277J f o(r—=r’")-8E(r’")dZ'r'dr’. (B3
0 — o0

Also, using the partial integration method, we can see that |f the tangential components d& or B are given as the

exp( — 11t?)

) — 2 o0
0 t I Jo t

X (A13)

2

Since

ot=0andot=n

me ; V)

boundary conditions then E¢B2) straightforwardly goes to
the following relation:

iw
J5J*~5Edr+—J[|5E|2—|6E|2]dr=0. (B4)
41 \VJ

Relation(B5) shows that the real part of the first term should
vanish:

ot=(/2)nand ot=(372) n

FIG. 16. Spatial variation of the ponderomo-
tive potentialV,y; for single-turn(a) and double-
turn (b) antenna cases.
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Re{f 8J* - 6E dr

On the other hand, since the convolution relation gives

Re 0 1| Semol
4

3/2
=0. (B5) Re“ 8J* - SE drF (ZRZJ)z >
2 m

. (B7)

+n§1 RG{O—:“ 5emn|2

J(r,z)= \/Emz,l Jl(pmr){ 02m0 +nzl 01€mnC0Y (n2)

(B6) Since the sign of Ref}) is equal to ImZR) and ImZ,) is
we have always greater than zerég,,, should vanish.

[1] J. Hopwood, C. R. Guarnier, S. J. Whitehair, and J. J. Cuomo, Discharges and Materials Processin@Viley, New York,

J. Vac. Sci. Technol. A1, 152(1993. 1994,
[2] J. Hopwood, C. R. Guarnier, S. J. Whitehair, and J. J. Cuomo|15] E. S. Weibel, Phys. Fluidg€,0, 741 (1967).

J. Vac. Sci. Technol. A1, 147 (1993. [16] J. A. Reynolds, H. A. Blevin, and P. C. Thonemann, Phys.
[3] J. H. Keller, J. C. Forster, and M. S. Barnes, J. Vac. Sci.  Rev. Lett.22 762(1969.

Technol. A11, 2487(1993. [17] H. A. Blevin, J. A. Reynolds, and P. C. Thonemann, Phys.
[4] T. Fukasawa, T. Nouda, A. Nakamura, H. Shindo, and Y. Fluids 13, 1_259(1970-

Horike, Jpn. J. Appl. Phys32, 6076(1993. [18] H. A. Blevin, J. A. Reynolds, and P. C. Thonemann, Phys.

[5] P. L. G. Ventzek, T. J. Sommerer, R. J. Hoekstra, and M. J_ __ Fluids 16, 82 (1973.
Kushner, J. Vac. Sci. Technol. B, 461(1994. [19] Y. S. Sayasov, Helv. Phys. Act&2, 288(1979.

.[20] N. S. Yoon, S. S. Kim, C. S. Chang, and D. I. Choi, Phys. Rev.
[6] P. L. G. Ventzek, R. J. Hekstra, and M. J. Kushner, J. Vac. Sci- E 54 757 (1996,

Technol. B12, 461 (1994). . . . .
[7] R. A. Stewart, P V(itello4)and D B. Graves. J. Vac. Sci Tech-[21] C. A. Balanis, Advanced Engineering Electromagnetics
o v ! T T ' ) (Wiley, New York, 1989.

nol. B 12, 478(1994. [22] B. McVey, Plasma Fusion Center, Massachusetts Institute of

[8] A. P. Paranjpe, J. Vac. Sci. Technol.1&, 2487(1994. Technology, Research Report No. PFC/RR-84-12, 1084
[9] G. DiPeso, V. Vahedi, D. W. Hewett, and T. D. Rognlien, J. published.

Vac. Sci. Technol. A2, 2487(1994). [23] J. D. JacksonClassical ElectrodynamicéWiley, New York,
[10] R. B. Piejak, V. A. Godyak, and B. M. Alexandrovich, Plasma 1979.

Sources Sci. TechnoB, 169 (1994. [24] John C. Helmer and J. Feinstein, J. Vac. Sci. Technal2B
[11] D. B. Graves, |IEEE Trans. Plasma S22, 1 (19949; 22, 31 507 (1994).

(19949. [25] G. Dipeso, T. D. Rognlien, V. Vahedi, and D. W. Hewett,
[12] M. M. Turner, Phys. Rev. Let{71, 1844(1993. IEEE Trans. Plasma S3, 4 (1995; 23, 550(1995.
[13] S. Ichimaru,Basic Principles of Plasma Physics: A Statistical [26] E. F. Jaeger, L. A. Berry, J. S. Tolliver, and D. B. Batchelor,

Approach Frontiers in Physics Vol. 41Benjamin, Reading, Phys. Plasmag, 2597(1995.

MA, 1973). [27] B. D. Fried and S. D. Cont& he Plasma Dispersion Function

[14] M. A. Lieberman and A. J. Lichtenber@rinciples of Plasma (Academic, New York, 19611



